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1 Angular Momentum

1.1 Prerequisite Ideas
The core idea I want to impart today is the similarities of angular momentum
analysis to the analysis of vectors and uniform circular motion.

It is important to remember several things throughout this analysis:

1. ω⃗ is defined to point along the axis of rotation, as defined by the right hand
rule (anticlockwise points out of the plane and is positive, and vice versa)

2. The relationship τ⃗ = dL⃗/dt is a vector relationship, meaning that torques
don’t have to change the magnitude of angular momentum and can instead
change the direction of angular momentum.

1.2 The Rotating Skew Rod
Figure 1 shows many interesting properties in regards to angular momentum and
torque. Obviously one can calculate L and τ by the typical methods of

∑
r × p

and
∑

r × F, but in order to emphasize the vector natures of ω and τ we shall
solve for them in a different manner.

In Figure 2, we see we can decompose ω into components parallel and per-
pendicular to the rod. The component parallel to the rod contributes no angular
momentum (the sin θ component of the cross product is 0), and as such the angu-
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Figure 1: The rotating skew rod
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Figure 2: ω on a skew rod

lae momentum can be written as

|L| = IωAB

= 2mℓ2ωAB

= 2mℓ2ω cosα

Now we would move on to calculating the torque, but first we would like to
make some observations. The thing to keep in mind here is that, as we just saw, the
magnitude of the angular momentum is constant of time; however, the horizontal
component is executing circular motion and the vertical component is constant
(see Figure 4)

Idea: The vector relationship ∆L = τ∆t shows that external torques don’t
have to change the angular velocity of the object, but can instead change the
direction of the angular momentum.

Now we will calculate the torque using τ = dL
dt

. Take a look at Figure 4. Note
that we only have to consider Lh since Lz is constant with time, and will disappear
in the derivative.
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Figure 3: A vector identity
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Figure 4: L on a skew rod

Consider a time like in figure 3. For ∆θ ≪ 1, we have that ∆Lh ≈ Lh∆θ.
Therefore,

|τ∆t| = |∆Lh| ≈ Lh∆θ

|τ | = Lh
∆θ

∆t

In the ∆t → 0 limit, we then have that:∣∣∣∣dLh

dt

∣∣∣∣ = ωLh (1)

In simple terms, the angular velocity ω times the component of the angular
momentum perpendicular to ω contributes to the magnitude of the net torque.

Note that this specific case has α̈ = 0, so that we can ignore the Iα̈ term in
Equation 1.

2 Analyzing Precession
Consider figure 51. It might seem overwhelming to tackle these at first, but we
can by just utilizing the vector nature of angular momentum.

Let’s start by figuring out how it would precess, by taking a look at Figure 6.
It’s natural to ask why it would precess in the z direction. This arises from

the fact that there is effectively a force on the AB axis perpendicular to the ABΩ

1Source: Kleppner and Kolenkow, 1973
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Figure 5: A Gyroscope Figure 6: Precession

plane. This in turn causes a torque along the z-axis, resulting in precession like
shown in Figure 6.

Now we can simply apply equation 1, taking into account the fact that θ is not
constant anymore and thus must contribute to the equation. We then have:∣∣∣∣dLh

dt

∣∣∣∣ = IABθ̈ + ΩLs sin θ

≈ IABθ̈ + ΩLsθ

assuming θ ≪ 1. Note that IAB is the moment of inertia of the disk about the AB
axis.

Now due to the pivot at the center of the disk, there cannot be any torques
along the AB axis, therefore |dLh

dt
| = 0. We then have:

IABθ̈ + (ΩLs)θ = 0

Which takes the form of simple harmonic motion. We then have our solution as:

θ(t) = θ0 sin(βt)

Where

β ≡
√

LsΩ

IAB

=

√
ωsΩIs
IAB

Wow!
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3 Moment of Inertia Tensor
We start with the task of trying to find the angular momentum of an object with
respect to the center of mass of the object. From the definition of angular momen-
tum we have

L =
∑

r×mṙ

Since r is a rotating vector we have ṙ = ω × r or

L =
∑

r×m(ω × r)

If we evalulate the ω × r using ω ≡ ωxı̂+ ωyȷ̂+ ωzk̂ we end up with

ω × r = (zωy − yωz)ı̂− (zωx − xωz)ȷ̂+ (yωx − xωy)k̂

If we work with a specific component of the final angular momentum, like for
example the x component, we have:

[r × (ω × r)]x = y(ω × r)z − z(ω × r)y

Substituting the previous equation into the current one, we find the angular mo-
mentum is

Lx = ωx

∑
mj(y

2
j + z2j )− ωy

∑
mjxjyj − ωz

∑
mjxjyj

= Ixxωx + Ixyωy + Ixzωz

Ixx is what we used to use as the definition of the moment of inertia, and what we
are familiar with. Ixy and Ixz are called the products of inertia.

We can get the other components of L by cycling coordinates: x → y, y →
z, z → x.

Lx = Ixxωx + Ixyωy + Ixzωz

Ly = Iyxωx + Iyyωy + Iyzωz

Lz = Izxωx + Izyωy + Izzωz

We can write this in the more compact form

L = Iijω
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Where

Iij ≡

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


This is called the Moment of Inertia Tensor.
Interestingly enough, it is always possible to choose a set of axis such that the

products of inertia are zero. These axis are called the primordial axis, and coincide
with the symmetry axes of the object. In such cases the moment of inertia tensor
takes the simple(r) form

Iij =

Ixx 0 0
0 Iyy 0
0 0 Izz


Interestingly, the primordial axes are the eigenvectors of the moment of inertia

tensor.

4 Eulers Rigid Body Equations

Figure 7: The Primor-
dial Axis Rotating

Figure 8: Rotation about
2

Figure 9: Rotation about
3

We now turn to finding the full form of dL/dt. We start with one component, say
(dL/dt)1. Consider a rotation rotating about it’s primordial axis at a time t. The
change in L1, ∆L1 = L1(t+ δt)− L1(t), then has several contributions.

The first contribution is obviously I1ω1. We can get the contributions from
∆θ2 and ∆θ3 by looking at the components of L2 and L3 along axis 1. This
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gives contributions of ∆(L1 cos θ2) + ∆(L3 sin θ2) from rotating about θ2, and
∆(L1 cos θ3)−∆(L2 sin θ3). Making the small angle approximations for ∆θ <<
1, we have cos θ ≈ 1 and sin θ ≈ θ. As such, the contributions are

L3∆θ2 and −L2∆θ3

I won’t prove it rigorously, but it’s possible that the contributions add alge-
braically. Using L2 = I2ω2 and L3 = I3ω3, we have that

∆L = Iω1 + I3ω3∆θ2 − I2ω2∆θ3

Dividing by ∆t and taking the limit t → 0 gives:

τ1 = I1θ̈1 + (I3 − I2)ω2ω3

We can get the other dimensions by cycling the coordinates 1 → 2, 2 →
3, 3 → 1. As such we get our final result:

τ1 = I1θ̈1 + (I3 − I2)ω2ω3

τ2 = I1θ̈2 + (I1 − I3)ω1ω3

τ3 = I3θ̈3 + (I2 − I1)ω1ω2
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