David Tong: Vector Calculus Example Sheet 3

By Resident Physics Noob

A note on notation: I try to stick to the notation used in the lecture notes. However, based

on space (and how lazy I'm feeling), I may use some shortcuts (i.e. 9, instead of %, omit
bounds like S or 98, etc.)

1)
1.i)
Switch to polar coordinates:
x = Rcos(¢)
y = Rsin(¢)
dz = —Rsin(¢) do
dy = Rcos(¢)de

Then we have

I= / ! d¢[—(R? cos® ¢)(Rsin ) (—Rsin¢) + (Rcos ¢)(R? sin? ¢) (R cos ¢)]
0

_ TR
2
For the area integral, we know that P = —z%y and Q = zy? - therefore we also have
oP
Ay
oQ 9
oz Y

Substituting into Greens theorem (and using dA = pdpd¢) gives
27 R 4
TR
| a6 [ anpla® v =T
0 0

in agreement with our previous result.
1.ii)
By Greens theorem, we have
I= / (z® +y?)dA
A

This integral doesn’t change if the space is rotated, because 2% 4 y2 is simply the distance
from the origin, and dA is independent of the coordinate system.

2)

2.1)
We have that V x F = —2zk. Our surface dS is, in spherical coordinates



R?sin(f)e,.df d¢ = sin(f)e,.dd de

since R = 1. Using k = cos 6 we have

us

(VxF)-dS=/2

2m
dé / dé(—2zsin 6 cos 6)
0

0
=27

The line integral is the rim of the shell, and is parameterized by p =1,z =0 or

x = (cos ¢, sin ¢, 0) = dax = (—sin ¢, cos ¢, 0) d¢

Thus
F.dx=—ysing —xcos¢p = —1
27
/F-da::/ —d¢ =27
as 0
3)
3.1)

Stokes theorem says

?fgs(axF)-dmz/Vx(axF)'dS

s
Using
A-(BxC)=B-(CxA)
Ax(BxC)=B(A-C)—C(A-B)
AxB=—BxA
we have

—a-?g dxxF:/[a(V-F)—(a-V)F]dS
oS S
:a/[(V-F)dS—(dS-V)F]
S
We can rewrite

(V-F)dS — (dS - V)F = —((dS x V) x F)

Substituting back in, and doing some algebra gives

74 da:sz/(deV)xF
as S

as we intended to prove.

3.ii)
Let’s do the line integral first.
1. From origin to (1,0,0) we have dx = (1,0, 0) dz, so



1 1
/dxxF:/ (1,0,0) x (z,0,0)dz = 0
0 0

2. From (1,0,0) to (1,1,0) we have de = (0,1,0)dy and F = (1,y,0), so

/1(0,1,0) % (1,1,0)dy = (0,0, 1)
0

3. From (1,1,0) to (0,1,0), we have de = (—1,0,0) dz and F = (z,1,0), so

/1(—1,0,0) x (z,1,0)dz = (0,0,—1)
0

4. From (0,1,0) to origin, we have de = (0,—1,0)dy and F = (0,x,0) so
1
/ (0,-1,0) x (0,2,0)dy = 0
0

so the total is (0,0, —2).

For the surface integral we have dS = (0,0,1)dz dy so

N 0 0
deV—kXV—(—a—y,%,O)

1 1 8 8
dS x V XF://(——,—,O>X x,y,z)drd
fasxwyxr= [ [ (5 500) x @) deay
= 2k

in agreement with our previous result.

4)
Because 7 = 1 we have that F'(x) = x. We also have the normal being in the same direction

as x, and because r = 1 we know that x is already unit sized. Therefore we have that

/ F.dS = / x - x dS = Surface area of sphere = 4m
S S

By Stokes theorem we expect that if FF =V x A we should be able to write
/(VxA)-d.S'z A-dS=0
S oS

where the last line comes from the fact that the boundary of a closed surface (like our
sphere) is the empty set. However, as calculated above, we clearly got a nonzero value.

We can calculate V - F' with the divergence theorem. Because the boundary of a sphere is the
empty set, we have that

/(V-F)dV:/ F-dS =0
14 ov

=V - F=0

However, note that we cannot use this to conclude that F = V x A globally, because the
given proof had the requirement that the domain of F(z) is R3, but in our case the domain
is R3\ 0.



5)

I got lazy and put the curl into Wolfram Alpha, which spit out the F'(x) given in the
previous problem. However, note that this isn’t a contradiction because the discontinuity at
x? 4+ y? = 0 still exists.

TODO: T also got too lazy to do the surface integral

6)
6.i) E(r)
We have
E-dS= | E-dS =4nr’E
L L 7)

By Gauss’ law, we know that this equals % so we have

Q fvpdV

E = =
(r) dmegr?  Ameyr?

e From r < a, the charge integral is 0 so £ = 0.
e For a < r < b, the charge integral is

e For r > b, the charge is simply (from the previous section)

Q="' —a")

6.ii) o(r)

It’s spherically symmetric, so we test a solution of the form V2r? = p(p + 1)rP=2.

e For r < a, this should equal 0 so we have ¢ = é + B,r < a.
e For a < r < b, this should be proportional to r so we try a solution of the form

kr3 = V?(krd) = 12kr = poZ
a

Po
—> = —
= 124

so we have

C
p=L0p3 424D
12a T

e For r > b it should take the form % + F

Now lets impose some conditions. As r — 00,¢ — 0 so F' = 0. We expect r = 0 to be non-
singular so A = 0. We also expect it to be continuous:



poa® | C

B = —+D
12 +a—i_
E  pb® C
A o T 5
b 12a+b+

Finally, we expect ¢’ to be continuous at r = a and r = b:

_me C
0= 4 a?
_E_pt? _C
b2 4a b2
Solving gives
B 4(a® —b3)
Cl_ P 3at
D|  12a| —4b3
E 3(a* —b%)
( a® — b3
s ifr<a
3 3
= ¢ =< g—oaﬁ—i-—pij ——p302 ifa<r<b
4 b4
fle =P irr >
ar
You can check yourself that computing V¢ gives F.
7)
7.i) Identities
We have
oy Oy or T, T

Vip = 9%~ By 5 (0 (7“)761' =1 (7“)7

For the Laplacian, we have

v (i) = 2 [wn]

ox?
oYz ,, .0 [z,
= Garr V05 (3)

V4 ’? wl ]' / i2
=y T Ly
o 3 / 1 /
= 4(r) + 2/ (r) — /(1)

=4 () + 9/ ()

assuming we’re in R3. The Laplacian in spherical coordinates (ignoring all § and ¢ terms) is



19 (.09 10 .,
Vo= () = etV )

=4 () + 2y (r)

in agreement with the result using suffix notation.

7.ii) V2 =1
We try a solution of the form 7P, and note that the result is independent of r so we’ll guess

K/I”Q.

Vz(nrz):6/<;=1=>/1=%

so we have the general form as

1, A
-2+ 4B
Y(r) 6r+r+

Alternatively, you could solve this to get the same solution:

10 [ ,0f

— (22l 2

r2 Or (T 87‘)
This must be non-singular so A = 0, and we must have Y(R) =1= B = %Rz. Therefore our
full solution is

Yir) = o2+ R

8)
8.1) V2¢ = V) =0
We have that
1 . . 1 .
5(@6 +i0,) (¢ + i) = 5(3z¢ — 0,0 +1i(0,¥+9,9))
=0
For this to equal to zero, the real and imaginary parts must be zero, or
0,6 =0, = 026 = 0,0,

The Laplacian of ¢ is simply 62¢ + 85 ¢ = 0,0, — 0,0,1. For sufficiently smooth functions,
the order of partial derivatives doesn’t matter and V2?¢ = 0. A similar process holds for 1.

8.ii) ¢ = ¢ perpendicular to ) =k
To show the condition on the curves, we must show that V¢ - Vi = 0, since the gradient
gives a normal vector to the curve. We have that

0,0 0,9+ 0,000 = (8y1/)) (—5y¢) +0,9-0,=0

thus proving the claim.



8.iii) imaginary shenanigans
We have f = (z + iy)e*™™ = e®(z + iy)e'?. By Euler’s formula, we then have that

f=¢€"(x+iy)(cosy + isiny)
=e*(zcosy —ysiny) + ie*(ycosy + xsiny)

from where it is trivial to pick out ¢ = e*(zcosy — ysiny) and 1) = e*(ycosy + xsiny).

9)

9a)

We have V2(f(z)e®¥) = [f”(z) + o f(z)]e*Y. Setting this equal to zero gives us the equation

of harmonic oscillations: f” + a?f = 0. This means f(z) = Asin(azx + ¢), where A and ¢ are

constants.

e ¥(0,y) = 0 means that we must have sing =0= ¢ =0

» 9Y(a,y) = 0 means that the sin(aa) term must be zero again, so aa = £ = o= +7. In
our case, let’s arbitrarily choose the negative solution. Then, our equation is

Y(x,y) = —Asin (Eaz> e mv/a
a
e Due to our choice of a negative value for «, the condition
lim ¢ (z,y) =0
Y—00
is satisfied.
« Since ¢(z,0) = Asin(Zz) we have that A = —X

Therefore, the solution to Laplace’s equation for the given boundary conditions is
Y(x,y) = Asin (zm) e mv/a
a

9b)

The Laplacian of 1(r, ) in cylindrical coordinates is
V2y(r,0) = (a?® — %) p* 2 cos 30
This is a solution to the Laplacian equation iff o = +8.

9b.i)
Let’s assume this function must be non-singular at » = 0, so we have o = 8. We have

Y(R,0) = ARP cos 80 = Acos 6
Therefore 8 =1 and A = AR™! and we have
W(r,0) = )\% cos 6
9b.ii)
In order for

rliglo P(r,0) =0

we must have a < 0, so we’ll use @« = —f. Then the condition



AR P cos 88 = Acos 6

tells us that 5 =1 and A = AR so we have

P(r,0) = )\E cos

r
9b.iii)
Recall that the Laplacian solutions are linear, so we can write
Y(z,y) = (Arﬂ + Briﬂ) cos 36
We have from the Dirichlet condition that
¥(b,0) = (Ab5 + Bb‘ﬁ) cos 36 = A cos 20
Therefore, 8 = 2 and Ab? + Bb=2 = \.

To apply the Neumann condition, note that the normal in polar coordinates is 7. Then we
have

#-Vip(a,0) = (2Aa — 2Ba"3) cos 260 =0
— Aa* =B

Combining with Ab% 4+ Bb~2 = X we have

2
.l
b4 + a4
B Ab2at
bt + at

Substituting back in gives us our equation

2 2 4
P(r,0) = ( AL + Aba r2> cos 20

bhtat bt +at

10)
We have

[@vr—vwro)av = [ ovipav - [ vwrsav
\% 1% 1%
By Greens first identity,
( ov-ds— [ (V9)- (V) dV) - ( w¥o-ds— [ (V9)- (V) dV)
ov 1% ov 1%

- / (6V — YV §) -dS
ov

11)
Let ¢ :=1; — 15, where ¢, and ¢, are two different solutions to the problem. We’ll try to
prove this theorem by contradiction. Note that



V264 ¢ = =V, + Uy — (V2 + 1by)
= p(z) — p(x) (1)

and

Now, let’s multiply Equation 1 by ¢, and integrate
/ (V26 + ¢)¢dV =0
v
:>_/ ¢v2¢dv+/ p*dV =0
1% v
By Greens first identity, this equals

/(v¢)2dV—/ ¢V¢-dS+/¢2dV:O
14 ov

\%4

But since dS = 7ndS and 7 - V¢ = 0, the middle term vanishes and we have
/ (V¢)2dV+/ $?dV =0
v 1%

Neither of the integrals can be < 0, so both must be zero everywhere, implying ¢ =0 = 9; =
14 in direct contradiction of our initial assumption. Hence any solution to this boundary
value problem must be unique.

12)

12.i) Uniqueness

Once again, we go looking for a proof by contradiction. Let ¢ = 1¢; — 1,, where ¥; and 1,
are two different solutions to the boundary conditions. It follows that V2¢ = V24, — V29, =
0. Then, simply multiply both sides by ¢ and apply Green’s first identity:

/V¢>V2¢dV =0

V)2dV — Vo) ndS =0
=>/V( 6) /W(qs %)

From the boundary condition we have that

(7 -V@)g(x) + ¢ = (A Vipy — - Vipy)g(x) + 11 — 1y
= (A - Vipy)g(x) + ¢ — (- Vipg)g() + 1)



Substituting this back into our integral, we get

/V (Vo)2dV + /a ) g‘f;

We were given the condition g(x) > 0 on 0V, so no quantities in this expression can be

dS=0

negative, so they must be zero everywhere. In other words, ¢ = 0 = 1; = 1,, so if a solution
exists, then it is unique.

12.ii)
Let’s take a spherical solution of the form 9 = é + B. At r = 1, the boundary condition is

o _
0% _
A4,
T T
=24

where in the last line we used r = 1. Therefore, we have

w(m):A(ﬁ—Q) YA £0

TODO: this solution is singular at r =0
13)
13.i)

By a rearranging of Greens first identity, we have that
/ (Vo) - (Vu)dV = / v(Vu) -dS —/ vV2udV
1% av 1%

We have that v is harmonic so V2u = 0 and the second term on the right is 0. Additionally,
we have that v = 0 on OV so the left term on the right is also 0. Therefore, we have that

/ (Vo) - (Vu)dV = 0
1%

as we set out to show.
13.ii)
We have that w = v+ u, so
Vw|? = |[Vv + Vul? = |Vv]? + 2(Vv) - (Vu) + |Vul?

Integrate both sides over a volume V' to get

/]Vw\de=/|Vv]2dV+2/(Vv)-(Vu)dV+/\Vu]2dV
174 1% 1% Vv

=/|Vv|2dV+/|Vu|2dV
14 Vv



where the last step was due to the expression we proved in part 1. Note that |[Vu[2dV > 0
always, so we can rewrite this as

/|Vw|2dV2/]Vu|2dV
% 1%

14)

14.)

We have from the mean value property that ¥ (a) = ﬁ i) oy ¥(x)dS, where V is the volume
of the ball. Our goal is to express 1(a) in terms of the volume V instead of the surface OV

From the definition of a volume integral, we have

/‘/1/)(cc)dV=/0rdfr’/8vw(a:)dS

From here, notice that [ ov P(x) dS = 4mr?y(a). Plugging it in gives us

/V b(z)dV = / " dmr2p(a) dr’

0

4

= 57”“31/1(0)

= (@) = s [ v@av

as we set out to show.

14.ii)
We have

Next, take the gradient and consider the limit as r — oo:

TIE?O Vi(a) = Tlirélov (%/Vw(zc) dV)

Because ¥(x) < M for some M, the average value approaches a constant as r — oo and thus
the gradient goes to 0. This holds for arbitrary points a € R3.

15)
Consider a small amount of water with mass pdV. A time dt later, it will still have a mass

pdV = px -dS, assuming water is incompressible and the density stayed approximately
constant. Integrating, we then have



The left side is simply V. Then, taking % on both sides gives

v _d

dt
/_ ds
:/v-dS

The second result is a generalization of the previous result. The total mass is

M=/pdV=/pa:-dS
v v

We can take % to see how the mass changes with time. By the chain rule, it follows that

M d
d
dat dt/ pdv

/apdV+/ pa—w

o ot

/3”dv+ pv-dS
ov

In words, this equation says that in a time ét, the change in the mass of the fluid has
contributions from changes in density as well as how much fluid leaves from open surfaces.
Note that setting p = constant gives us our first equation back.
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