
David Tong: Vector Calculus Example Sheet 3

By Resident Physics Noob

A note on notation: I try to stick to the notation used in the lecture notes. However, based
on space (and how lazy I’m feeling), I may use some shortcuts (i.e. 𝜕𝑥 instead of 𝜕

𝜕𝑥 , omit
bounds like 𝑆 or 𝜕𝑆, etc.)

1)
1.i)
Switch to polar coordinates:

𝑥 = 𝑅 cos(𝜙)
𝑦 = 𝑅 sin(𝜙)

d𝑥 = −𝑅 sin(𝜙) d𝜙
d𝑦 = 𝑅 cos(𝜙) d𝜙

Then we have

𝐼 = ∫
2𝜋

0
d𝜙[−(𝑅2 cos2 𝜙)(𝑅 sin 𝜙)(−𝑅 sin 𝜙) + (𝑅 cos 𝜙)(𝑅2 sin2 𝜙)(𝑅 cos 𝜙)]

= 𝜋𝑅4

2

For the area integral, we know that 𝑃 = −𝑥2𝑦 and 𝑄 = 𝑥𝑦2 - therefore we also have

𝜕𝑃
𝜕𝑦

= −𝑥2

𝜕𝑄
𝜕𝑥

= 𝑦2

Substituting into Greens theorem (and using d𝐴 = 𝜌 d𝜌 d𝜙) gives

∫
2𝜋

0
d𝜙 ∫

𝑅

0
d𝜌 𝜌(𝑥2 + 𝑦2) = 𝜋𝑅4

2

in agreement with our previous result.

1.ii)
By Greens theorem, we have

𝐼 = ∫
𝐴
(𝑥2 + 𝑦2) d𝐴

This integral doesn’t change if the space is rotated, because 𝑥2 + 𝑦2 is simply the distance
from the origin, and d𝐴 is independent of the coordinate system.

2)
2.i)
We have that ∇ × 𝐹 = −2𝑧�̂�. Our surface d𝑺 is, in spherical coordinates



𝑅2 sin(𝜃)𝒆𝒓 d𝜃 d𝜙 = sin(𝜃)𝒆𝒓 d𝜃 d𝜙

since 𝑅 = 1. Using �̂� = cos 𝜃 we have

(∇ × 𝐹) ⋅ d𝑺 = ∫
𝜋
2

0
d𝜃 ∫

2𝜋

0
d𝜙(−2𝑧 sin 𝜃 cos 𝜃)

= −2𝜋

The line integral is the rim of the shell, and is parameterized by 𝜌 = 1, 𝑧 = 0 or

𝒙 = (cos 𝜙, sin 𝜙, 0) ⟹ d𝒙 = (− sin 𝜙, cos 𝜙, 0) d𝜙

Thus

𝑭 ⋅ d𝒙 = −𝑦 sin 𝜙 − 𝑥 cos 𝜙 = −1

∫
𝜕𝑆

𝑭 ⋅ d𝒙 = ∫
2𝜋

0
− d𝜙 = −2𝜋

3)
3.i)
Stokes theorem says

∮
𝜕𝑆

(𝒂 × 𝑭) ⋅ d𝒙 = ∫
𝑆

∇ × (𝒂 × 𝑭) ⋅ d𝑺

Using

𝑨 ⋅ (𝑩 × 𝑪) = 𝑩 ⋅ (𝑪 × 𝑨)
𝑨 × (𝑩 × 𝑪) = 𝑩(𝑨 ⋅ 𝑪) − 𝑪(𝑨 ⋅ 𝑩)

𝑨 × 𝑩 = −𝑩 × 𝑨

we have

−𝒂 ⋅ ∮
𝜕𝑆

d𝒙 × 𝑭 = ∫
𝑆
[𝒂(∇ ⋅ 𝑭 ) − (𝒂 ⋅ ∇)𝑭 ] d𝑺

= 𝒂 ∫
𝑆
[(∇ ⋅ 𝑭 ) d𝑺 − (d𝑺 ⋅ ∇)𝑭 ]

We can rewrite

(∇ ⋅ 𝑭 ) d𝑺 − (d𝑺 ⋅ ∇)𝑭 = −((d𝑺 × ∇) × 𝑭)

Substituting back in, and doing some algebra gives

∮
𝜕𝑆

d𝒙 × 𝑭 = ∫
𝑆
(d𝑺 × ∇) × 𝑭

as we intended to prove.

3.ii)
Let’s do the line integral first.
1. From origin to (1,0,0) we have d𝒙 = (1, 0, 0) d𝑥, so



∫
1

0
d𝒙 × 𝑭 = ∫

1

0
(1, 0, 0) × (𝑥, 0, 0) d𝑥 = 0

2. From (1,0,0) to (1,1,0) we have d𝒙 = (0, 1, 0) d𝑦 and 𝑭 = (1, 𝑦, 0), so

∫
1

0
(0, 1, 0) × (1, 𝑦, 0) d𝑦 = (0, 0, −1)

3. From (1,1,0) to (0,1,0), we have d𝒙 = (−1, 0, 0) d𝑥 and 𝑭 = (𝑥, 1, 0), so

∫
1

0
(−1, 0, 0) × (𝑥, 1, 0) d𝑥 = (0, 0, −1)

4. From (0,1,0) to origin, we have d𝒙 = (0, −1, 0) d𝑦 and 𝑭 = (0, 𝑥, 0) so

∫
1

0
(0, −1, 0) × (0, 𝑥, 0) d𝑦 = 0

so the total is (0, 0, −2).

For the surface integral we have d𝑺 = (0, 0, 1) d𝑥 d𝑦 so

d𝑺 × ∇ = �̂� × ∇ = (− 𝜕
𝜕𝑦

, 𝜕
𝜕𝑥

, 0)

∫
𝑆
(d𝑺 × ∇) × 𝑭 = ∫

1

0
∫

1

0
(− 𝜕

𝜕𝑦
, 𝜕
𝜕𝑥

, 0) × (𝑥, 𝑦, 𝑧) d𝑥 d𝑦

= −2�̂�

in agreement with our previous result.

4)
Because 𝑟 = 1 we have that 𝑭(𝒙) = 𝒙. We also have the normal being in the same direction
as 𝒙, and because 𝑟 = 1 we know that 𝒙 is already unit sized. Therefore we have that

∫
𝑆

𝑭 ⋅ d𝑺 = ∫
𝑆

𝒙 ⋅ 𝒙 d𝑆 = Surface area of sphere = 4𝜋

By Stokes theorem we expect that if 𝑭 = ∇ × 𝑨 we should be able to write

∫
𝑆
(∇ × 𝑨) ⋅ d𝑺 = ∫

𝜕𝑆
𝑨 ⋅ d𝑺 = 0

where the last line comes from the fact that the boundary of a closed surface (like our
sphere) is the empty set. However, as calculated above, we clearly got a nonzero value.

We can calculate ∇ ⋅ 𝑭  with the divergence theorem. Because the boundary of a sphere is the
empty set, we have that

∫
𝑉

(∇ ⋅ 𝑭 ) d𝑉 = ∫
𝜕𝑉

𝑭 ⋅ d𝑺 = 0

⟹ ∇ ⋅ 𝑭 = 0

However, note that we cannot use this to conclude that 𝑭 = ∇ × 𝑨 globally, because the
given proof had the requirement that the domain of 𝑭(𝒙) is ℝ3, but in our case the domain
is ℝ3 ∖ 0.



5)
I got lazy and put the curl into Wolfram Alpha, which spit out the 𝑭(𝑥) given in the
previous problem. However, note that this isn’t a contradiction because the discontinuity at
𝑥2 + 𝑦2 = 0 still exists.

TODO: I also got too lazy to do the surface integral

6)
6.i) E(r)
We have

∫
𝑆

𝑬 ⋅ d𝑺 = ∫
𝑆

𝐸 ⋅ d𝑆 = 4𝜋𝑟2𝐸(𝑟)

By Gauss’ law, we know that this equals 𝑄
𝜀0

 so we have

𝐸(𝑟) = 𝑄
4𝜋𝜀0𝑟2 =

∫
𝑉

𝜌 d𝑉
4𝜋𝜀0𝑟2

• From 𝑟 ≤ 𝑎, the charge integral is 0 so 𝐸 = 0.
• For 𝑎 < 𝑟 < 𝑏, the charge integral is

∫
𝑟

𝑎

𝜌0
𝑎

𝑟(4𝜋𝑟2) d𝑟 = 𝜋𝜌0
𝑎

(𝑟4 − 𝑎4)

⟹ 𝐸 = 𝜌0
4𝑎𝜀0𝑟2 (𝑟4 − 𝑎4)

• For 𝑟 ≥ 𝑏, the charge is simply (from the previous section)

𝑄 = 𝜋𝜌0
𝑎

(𝑏4 − 𝑎4)

⟹ 𝐸 = 𝜌0
4𝑎𝜀0𝑟2 (𝑏4 − 𝑎4)

6.ii) 𝜙(𝑟)
It’s spherically symmetric, so we test a solution of the form ∇2𝑟𝑝 = 𝑝(𝑝 + 1)𝑟𝑝−2.

• For 𝑟 ≤ 𝑎, this should equal 0 so we have 𝜙 = 𝐴
𝑟 + 𝐵, 𝑟 ≤ 𝑎.

• For 𝑎 < 𝑟 < 𝑏, this should be proportional to 𝑟 so we try a solution of the form

𝜅𝑟3 ⟹ ∇2(𝜅𝑟3) = 12𝜅𝑟 = 𝜌0
𝑟
𝑎

⟹ 𝜅 = 𝜌0
12𝑎

so we have

𝜙 = 𝜌0
12𝑎

𝑟3 + 𝐶
𝑟

+ 𝐷

• For 𝑟 ≥ 𝑏 it should take the form 𝐸
𝑟 + 𝐹

Now lets impose some conditions. As 𝑟 → ∞, 𝜙 → 0 so 𝐹 = 0. We expect 𝑟 = 0 to be non-
singular so 𝐴 = 0. We also expect it to be continuous:



𝐵 = 𝜌0𝑎2

12
+ 𝐶

𝑎
+ 𝐷

𝐸
𝑏

= 𝜌0𝑏3

12𝑎
+ 𝐶

𝑏
+ 𝐷

Finally, we expect 𝜙′ to be continuous at 𝑟 = 𝑎 and 𝑟 = 𝑏:

0 = 𝜌0𝑎
4

− 𝐶
𝑎2

−𝐸
𝑏2 = 𝜌0𝑏2

4𝑎
− 𝐶

𝑏2

Solving gives

(
((
((
((

𝐵
𝐶
𝐷
𝐸)

))
))
))

= 𝜌0
12𝑎

(
((
((
((

4(𝑎3 − 𝑏3)
3𝑎4

−4𝑏3

3(𝑎4 − 𝑏4))
))
))
))

⟹ 𝜙 =

{{
{{
{{
{{
{{
{

𝜌0
𝑎3 − 𝑏3

3𝑎
if 𝑟 < 𝑎

𝜌0
12𝑎

𝑟3 + 𝜌0𝑎3

4𝑟
− 𝜌0𝑏3

3𝑎
if 𝑎 < 𝑟 < 𝑏

𝜌0(𝑎4 − 𝑏4)
4𝑎𝑟

if 𝑟 ≥ 𝑏

You can check yourself that computing ∇𝜙 gives 𝐸.

7)
7.i) Identities
We have

∇𝜓 = 𝜕𝜓
𝜕𝑥𝑖 𝒆𝒊 = 𝜕𝜓

𝜕𝑟
𝜕𝑟
𝜕𝑥𝑖 𝒆𝒊 = 𝜓′(𝑟)𝑥𝑖

𝑟
𝒆𝒊 = 𝜓′(𝑟)𝒙

𝑟

For the Laplacian, we have

∇ ⋅ (∇𝜓) = 𝜕
𝜕𝑥𝑖 [𝜓

′(𝑟)𝑥𝑖
𝑟

]

= 𝜕𝜓′

𝜕𝑥𝑖
𝑥𝑖
𝑟

+ 𝜓′(𝑟) 𝜕
𝜕𝑥𝑖 (

𝑥𝑖
𝑟

)

= 𝜓″(𝑟)𝑥
2
𝑖

𝑟2 + 𝜓′(𝑟)
𝑟

− 1
𝑟
𝜓′(𝑟)𝑥

𝑖2

𝑟2

= 𝜓″(𝑟) + 3
𝑟
𝜓′(𝑟) − 1

𝑟
𝜓′(𝑟)

= 𝜓″(𝑟) + 2
𝑟
𝜓′(𝑟)

assuming we’re in ℝ3. The Laplacian in spherical coordinates (ignoring all 𝜃 and 𝜙 terms) is



∇2𝜓 = 1
𝑟2

𝜕
𝜕𝑟

(𝑟2 𝜕𝜓
𝜕𝑟

) = 1
𝑟2

𝜕
𝜕𝑟

(𝑟2𝜓′(𝑟))

= 𝜓″(𝑟) + 2
𝑟
𝜓′(𝑟)

in agreement with the result using suffix notation.

7.ii) ∇2𝜓 = 1
We try a solution of the form 𝑟𝑝, and note that the result is independent of 𝑟 so we’ll guess
𝜅𝑟2.

∇2(𝜅𝑟2) = 6𝜅 = 1 ⟹ 𝜅 = 1
6

so we have the general form as

𝜓(𝑟) = 1
6
𝑟2 + 𝐴

𝑟
+ 𝐵

Alternatively, you could solve this to get the same solution:

1
𝑟2

𝜕
𝜕𝑟

(𝑟2 𝜕𝑓
𝜕𝑟

) = 1

This must be non-singular so 𝐴 = 0, and we must have 𝜓(𝑅) = 1 ⟹ 𝐵 = 5
6𝑅2. Therefore our

full solution is

𝜓(𝑟) = 1
6
𝑟2 + 5

6
𝑅2

8)
8.i) ∇2𝜙 = ∇2𝜓 = 0
We have that

1
2
(𝜕𝑥 + 𝑖𝜕𝑦)(𝜙 + 𝑖𝜓) = 1

2
(𝜕𝑥𝜙 − 𝜕𝑦𝜓 + 𝑖(𝜕𝑥𝜓 + 𝜕𝑦𝜙))

= 0

For this to equal to zero, the real and imaginary parts must be zero, or

𝜕𝑥𝜙 = 𝜕𝑦𝜓 ⇒ 𝜕2
𝑥𝜙 = 𝜕𝑥𝜕𝑦𝜓

𝜕𝑦𝜙 = −𝜕𝑥𝜓 ⇒ 𝜕2
𝑦𝜙 = −𝜕𝑦𝜕𝑥𝜓

The Laplacian of 𝜙 is simply 𝜕2
𝑥𝜙 + 𝜕2

𝑦𝜙 = 𝜕𝑥𝜕𝑦𝜓 − 𝜕𝑦𝜕𝑥𝜓. For sufficiently smooth functions,
the order of partial derivatives doesn’t matter and ∇2𝜙 = 0. A similar process holds for 𝜓.

8.ii) 𝜙 = 𝑐 perpendicular to 𝜓 = 𝑘
To show the condition on the curves, we must show that ∇𝜙 ⋅ ∇𝜓 = 0, since the gradient
gives a normal vector to the curve. We have that

𝜕𝑥𝜙 ⋅ 𝜕𝑥𝜓 + 𝜕𝑦𝜙 ⋅ 𝜕𝑦𝜓 = (𝜕𝑦𝜓)(−𝜕𝑦𝜙) + 𝜕𝑦𝜙 ⋅ 𝜕𝑦𝜓 = 0

thus proving the claim.



8.iii) imaginary shenanigans
We have 𝑓 = (𝑥 + 𝑖𝑦)𝑒𝑥+𝑖𝑦 = 𝑒𝑥(𝑥 + 𝑖𝑦)𝑒𝑖𝑦. By Euler’s formula, we then have that

𝑓 = 𝑒𝑥(𝑥 + 𝑖𝑦)(cos 𝑦 + 𝑖 sin 𝑦)
= 𝑒𝑥(𝑥 cos 𝑦 − 𝑦 sin 𝑦) + 𝑖𝑒𝑥(𝑦 cos 𝑦 + 𝑥 sin 𝑦)

from where it is trivial to pick out 𝜙 = 𝑒𝑥(𝑥 cos 𝑦 − 𝑦 sin 𝑦) and 𝜓 = 𝑒𝑥(𝑦 cos 𝑦 + 𝑥 sin 𝑦).

9)
9a)
We have ∇2(𝑓(𝑥)𝑒𝛼𝑦) = [𝑓″(𝑥) + 𝛼2𝑓(𝑥)]𝑒𝛼𝑦. Setting this equal to zero gives us the equation
of harmonic oscillations: 𝑓″ + 𝛼2𝑓 = 0. This means 𝑓(𝑥) = 𝐴 sin(𝛼𝑥 + 𝜙), where 𝐴 and 𝜙 are
constants.
• 𝜓(0, 𝑦) = 0 means that we must have sin 𝜙 = 0 ⇒ 𝜙 = 0
• 𝜓(𝑎, 𝑦) = 0 means that the sin(𝛼𝑎) term must be zero again, so 𝛼𝑎 = ±𝜋 ⇒ 𝛼 = ±𝜋

𝑎 . In
our case, let’s arbitrarily choose the negative solution. Then, our equation is

𝜓(𝑥, 𝑦) = −𝐴 sin(𝜋
𝑎
𝑥)𝑒−𝜋𝑦/𝑎

• Due to our choice of a negative value for 𝛼, the condition

lim
𝑦→∞

𝜓(𝑥, 𝑦) = 0

is satisfied.
• Since 𝜓(𝑥, 0) = 𝜆 sin(𝜋

𝑎𝑥) we have that 𝐴 = −𝜆

Therefore, the solution to Laplace’s equation for the given boundary conditions is

𝜓(𝑥, 𝑦) = 𝜆 sin(𝜋
𝑎
𝑥)𝑒−𝜋𝑦/𝑎

9b)
The Laplacian of 𝜓(𝑟, 𝜃) in cylindrical coordinates is

∇2𝜓(𝑟, 𝜃) = (𝛼2 − 𝛽2)𝜌𝛼−2 cos 𝛽𝜃

This is a solution to the Laplacian equation iff 𝛼 = ±𝛽.

9b.i)
Let’s assume this function must be non-singular at 𝑟 = 0, so we have 𝛼 = 𝛽. We have

𝜓(𝑅, 𝜃) = 𝐴𝑅𝛽 cos 𝛽𝜃 = 𝜆 cos 𝜃

Therefore 𝛽 = 1 and 𝐴 = 𝜆𝑅−1 and we have

𝜓(𝑟, 𝜃) = 𝜆 𝑟
𝑅

cos 𝜃

9b.ii)
In order for

lim
𝑟→∞

𝜓(𝑟, 𝜃) = 0

we must have 𝛼 < 0, so we’ll use 𝛼 = −𝛽. Then the condition



𝐴𝑅−𝛽 cos 𝛽𝜃 = 𝜆 cos 𝜃

tells us that 𝛽 = 1 and 𝐴 = 𝜆𝑅 so we have

𝜓(𝑟, 𝜃) = 𝜆𝑅
𝑟

cos 𝜃

9b.iii)
Recall that the Laplacian solutions are linear, so we can write

𝜓(𝑥, 𝑦) = (𝐴𝑟𝛽 + 𝐵𝑟−𝛽) cos 𝛽𝜃

We have from the Dirichlet condition that

𝜓(𝑏, 𝜃) = (𝐴𝑏𝛽 + 𝐵𝑏−𝛽) cos 𝛽𝜃 = 𝜆 cos 2𝜃

Therefore, 𝛽 = 2 and 𝐴𝑏2 + 𝐵𝑏−2 = 𝜆.

To apply the Neumann condition, note that the normal in polar coordinates is �̂�. Then we
have

�̂� ⋅ ∇𝜓(𝑎, 𝜃) = (2𝐴𝑎 − 2𝐵𝑎−3) cos 2𝜃 = 0

⟹ 𝐴𝑎4 = 𝐵

Combining with 𝐴𝑏2 + 𝐵𝑏−2 = 𝜆 we have

𝐴 = 𝜆𝑏2

𝑏4 + 𝑎4

𝐵 = 𝜆𝑏2𝑎4

𝑏4 + 𝑎4

Substituting back in gives us our equation

𝜓(𝑟, 𝜃) = ( 𝜆𝑏2

𝑏4 + 𝑎4 𝑟2 + 𝜆𝑏2𝑎4

𝑏4 + 𝑎4 𝑟−2) cos 2𝜃

10)
We have

∫
𝑉

(𝜙∇2𝜓 − 𝜓∇2𝜙) d𝑉 = ∫
𝑉

𝜙∇2𝜓 d𝑉 − ∫
𝑉

𝜓∇2𝜙 d𝑉

By Greens first identity,

(∫
𝜕𝑉

𝜙∇𝜓 ⋅ d𝑺 − ∫
𝑉

(∇𝜓) ⋅ (∇𝜙) d𝑉 ) − (∫
𝜕𝑉

𝜓∇𝜙 ⋅ d𝑺 − ∫
𝑉

(∇𝜓) ⋅ (∇𝜙) d𝑉 )

= ∫
𝜕𝑉

(𝜙∇𝜓 − 𝜓∇𝜙) ⋅ d𝑺

11)
Let 𝜙 ≔ 𝜓1 − 𝜓2, where 𝜓1 and 𝜓2 are two different solutions to the problem. We’ll try to
prove this theorem by contradiction. Note that



−∇2𝜙 + 𝜙 = −∇2𝜓1 + 𝜓1 − (∇2𝜓2 + 𝜓2)
= 𝜌(𝒙) − 𝜌(𝒙)
= 0

(1)

and

�̂� ⋅ ∇𝜙 = �̂� ⋅ ∇𝜓1 − �̂� ⋅ ∇𝜓2

= 𝑓(𝒙) − 𝑓(𝒙)
= 0

Now, let’s multiply Equation 1 by 𝜙, and integrate

∫
𝑉

(−∇2𝜙 + 𝜙)𝜙 d𝑉 = 0

⟹ − ∫
𝑉

𝜙∇2𝜙 d𝑉 + ∫
𝑉

𝜙2 d𝑉 = 0

By Greens first identity, this equals

∫
𝑉

(∇𝜙)2 d𝑉 − ∫
𝜕𝑉

𝜙∇𝜙 ⋅ d𝑺 + ∫
𝑉

𝜙2 d𝑉 = 0

But since d𝑺 = �̂� d𝑆 and �̂� ⋅ ∇𝜙 = 0, the middle term vanishes and we have

∫
𝑉

(∇𝜙)2 d𝑉 + ∫
𝑉

𝜙2 d𝑉 = 0

Neither of the integrals can be < 0, so both must be zero everywhere, implying 𝜙 = 0 ⇒ 𝜓1 =
𝜓2 in direct contradiction of our initial assumption. Hence any solution to this boundary
value problem must be unique.

12)
12.i) Uniqueness
Once again, we go looking for a proof by contradiction. Let 𝜙 = 𝜓1 − 𝜓2, where 𝜓1 and 𝜓2
are two different solutions to the boundary conditions. It follows that ∇2𝜙 = ∇2𝜓1 − ∇2𝜓2 =
0. Then, simply multiply both sides by 𝜙 and apply Green’s first identity:

∫
𝑉

𝜙∇2𝜙 d𝑉 = 0

⟹ ∫
𝑉

(∇𝜙)2 d𝑉 − ∫
𝜕𝑉

(𝜙∇𝜙) ⋅ �̂� d𝑆 = 0

From the boundary condition we have that

(�̂� ⋅ ∇𝜙)𝑔(𝒙) + 𝜙 = (�̂� ⋅ ∇𝜓1 − �̂� ⋅ ∇𝜓2)𝑔(𝒙) + 𝜓1 − 𝜓2

= (�̂� ⋅ ∇𝜓1)𝑔(𝒙) + 𝜓1 − ((�̂� ⋅ ∇𝜓2)𝑔(𝒙) + 𝜓2)
= 𝑓(𝒙) − 𝑓(𝒙)
= 0

⟹ �̂� ⋅ ∇𝜙 = − 𝜙
𝑔(𝒙)



Substituting this back into our integral, we get

∫
𝑉

(∇𝜙)2 d𝑉 + ∫
𝜕𝑉

𝜙2

𝑔(𝒙)
d𝑆 = 0

We were given the condition 𝑔(𝒙) ≥ 0 on 𝜕𝑉 , so no quantities in this expression can be
negative, so they must be zero everywhere. In other words, 𝜙 = 0 ⇒ 𝜓1 = 𝜓2, so if a solution
exists, then it is unique.

12.ii)
Let’s take a spherical solution of the form 𝜓 = 𝐴

𝑟 + 𝐵. At 𝑟 = 1, the boundary condition is

(�̂� ⋅ ∇𝜓)(−1) + 𝜓 = 0

⟹ 𝜕𝜓
𝜕𝑟

= 𝜓

− 𝐴
𝑟2 = 𝐴

𝑟
+ 𝐵

𝐵 = −2𝐴

where in the last line we used 𝑟 = 1. Therefore, we have

𝜓(𝒙) = 𝐴( 1
|𝒙|

− 2) ∀𝐴 ≠ 0

TODO: this solution is singular at 𝑟 = 0

13)
13.i)
By a rearranging of Greens first identity, we have that

∫
𝑉

(∇𝑣) ⋅ (∇𝑢) d𝑉 = ∫
𝜕𝑉

𝑣(∇𝑢) ⋅ d𝑺 − ∫
𝑉

𝑣∇2𝑢 d𝑉

We have that 𝑢 is harmonic so ∇2𝑢 = 0 and the second term on the right is 0. Additionally,
we have that 𝑣 = 0 on 𝜕𝑉  so the left term on the right is also 0. Therefore, we have that

∫
𝑉

(∇𝑣) ⋅ (∇𝑢) d𝑉 = 0

as we set out to show.

13.ii)
We have that 𝑤 = 𝑣 + 𝑢, so

|∇𝑤|2 = |∇𝑣 + ∇𝑢|2 = |∇𝑣|2 + 2(∇𝑣) ⋅ (∇𝑢) + |∇𝑢|2

Integrate both sides over a volume 𝑉  to get

∫
𝑉

|∇𝑤|2 d𝑉 = ∫
𝑉

|∇𝑣|2 d𝑉 + 2 ∫
𝑉

(∇𝑣) ⋅ (∇𝑢) d𝑉 + ∫
𝑉

|∇𝑢|2 d𝑉

= ∫
𝑉

|∇𝑣|2 d𝑉 + ∫
𝑉

|∇𝑢|2 d𝑉



where the last step was due to the expression we proved in part 1. Note that |∇𝑣|2 d𝑉 ≥ 0
always, so we can rewrite this as

∫
𝑉

|∇𝑤|2 d𝑉 ≥ ∫
𝑉

|∇𝑢|2 d𝑉

14)
14.i)
We have from the mean value property that 𝜓(𝒂) = 1

4𝜋𝑟2 ∫
𝜕𝑉

𝜓(𝒙) d𝑆, where 𝑉  is the volume
of the ball. Our goal is to express 𝜓(𝒂) in terms of the volume 𝑉  instead of the surface 𝜕𝑉 .

From the definition of a volume integral, we have

∫
𝑉

𝜓(𝒙) d𝑉 = ∫
𝑟

0
d𝑟′ ∫

𝜕𝑉
𝜓(𝒙) d𝑆

From here, notice that ∫
𝜕𝑉

𝜓(𝒙) d𝑆 = 4𝜋𝑟2𝜓(𝒂). Plugging it in gives us

∫
𝑉

𝜓(𝒙) d𝑉 = ∫
𝑟

0
4𝜋𝑟′2𝜓(𝒂) d𝑟′

= 4
3
𝜋𝑟3𝜓(𝒂)

⟹ 𝜓(𝒂) = 1
4𝜋𝑟3/3

∫
𝑉

𝜓(𝒙) d𝑉

as we set out to show.

14.ii)
We have

𝜓(𝒂) = 1
𝑉

∫
𝑉

𝜓(𝒙) d𝑉

Next, take the gradient and consider the limit as 𝑟 → ∞:

lim
𝑟→∞

∇𝜓(𝒂) = lim
𝑟→∞

∇( 1
𝑉

∫
𝑉

𝜓(𝒙) d𝑉 )

Because 𝜓(𝒙) ≤ ℳ for some ℳ, the average value approaches a constant as 𝑟 → ∞ and thus
the gradient goes to 0. This holds for arbitrary points 𝒂 ∈ ℝ3.

15)
Consider a small amount of water with mass 𝜌 d𝑉 . A time d𝑡 later, it will still have a mass
𝜌 d𝑉 = 𝜌𝒙 ⋅ d𝑺, assuming water is incompressible and the density stayed approximately
constant. Integrating, we then have

∫
𝑉

𝜌 d𝑉 = ∫
𝑆

𝜌𝒙 ⋅ d𝑺

⟹ ∫
𝑉

d𝑉 = ∫
𝑆

𝒙 ⋅ d𝑺



The left side is simply 𝑉 . Then, taking d
d𝑡  on both sides gives

d𝑉
d𝑡

= d
d𝑡

∫ 𝒙 ⋅ d𝑺

= ∫ d𝒙
d𝑡

⋅ d𝑺

= ∫ 𝒗 ⋅ d𝑺

The second result is a generalization of the previous result. The total mass is

𝑀 = ∫
𝑉

𝜌 d𝑉 = ∫
𝑉

𝜌𝒙 ⋅ d𝑺

We can take d
d𝑡  to see how the mass changes with time. By the chain rule, it follows that

d𝑀
d𝑡

= d
d𝑡

∫
𝑉

𝜌 d𝑉

= ∫
𝑉

𝜕𝜌
𝜕𝑡

d𝑉 + ∫
𝜕𝑉

𝜌𝜕𝒙
𝜕𝑡

⋅ d𝑺

= ∫
𝑉

𝜕𝜌
𝜕𝑡

d𝑉 + ∫
𝜕𝑉

𝜌𝒗 ⋅ d𝑺

In words, this equation says that in a time 𝛿𝑡, the change in the mass of the fluid has
contributions from changes in density as well as how much fluid leaves from open surfaces.
Note that setting 𝜌 = constant gives us our first equation back.
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